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Abstract: Polycystic ovary syndrome (PCOS) presents with a range of clinical complications including hyperandrogen-
ism, polycystic ovaries, chronic oligo/anovulation, infertility, and metabolic alterations related to insulin resistance. 
Because the mechanism by which this disorder develops is poorly understood, information from experimental mod-
els of human disease phenotypes may help to define the mechanisms for the initiation and development of PCOS-
related pathological events. The establishment of animal models compatible with human PCOS is challenging, and 
applying the lessons learned from these models to human PCOS is often complicated. In this mini-review we provide 
examples of currently available genetic mouse models, their ovarian phenotypes, and their possible relationship to 
different aspects of human PCOS. Because of the practical and ethical limitations of studying PCOS-related events 
in humans, our understanding of the mechanisms that contribute to the etiology of human PCOS may be enhanced 
through further study of these transgenic and knockout mouse models.
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Introduction 

Polycystic ovary syndrome (PCOS), a complex 
genetic disorder, is a significant women’s health 
issue due to its high incidence and the fact that 
it often occurs before puberty [1]. It is estimat-
ed to affect 8–17% of women of reproductive 
age worldwide, and the number of reported 
cases of human PCOS increases annually [2]. 
The disorder presents with a wide range of clini-
cal complications including hyperandrogenism, 
polycystic ovaries, chronic oligo/anovulation, 
infertility, hyperinsulinemia, insulin resistance, 
and a higher prevalence of obesity [3]. The eti-
ology of the disease and the mechanisms by 
which this disorder progresses are still unclear, 
and this makes understanding the pathophysi-
ology of human PCOS challenging. Although 
abnormal gene expression profiles in the ova-
ries and theca cells of women with PCOS have 
been identified [4, 5], transgenic and knockout 
(KO) mouse models with pathological ovarian 

phenotypes mimicking those found in human 
PCOS are still of great interest. The value of 
developing such animal models is in their pro-
viding a means to systematically analyze the 
mechanisms underlying the development of 
PCOS. These models can also provide new 
insights into the etiology of PCOS and provide 
opportunities to explore diverse aspects of the 
disease such as drug development. 

A polycystic ovary morphology is consistent 
with, but not essential for, the diagnosis of 
human PCOS [3]. Pathological ovarian features 
include arrest of follicular development, accu-
mulation of multiple follicular cysts, and an 
increase in ovarian stromal thickness. These 
features lead to chronic oligo- or anovulation 
and subsequent infertility [3, 6]. 

Autocrine, paracrine, and endocrine factors are 
necessary for normal ovarian function in mam-
mals [6], and proper ovarian function is depen-
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dent upon several specialized cell lineages in a 
spatially ordered configuration. It is expected, 
therefore, that many genes are required to 
orchestrate ovarian cellular function and that 
intercellular signaling events will participate in 
the development of PCOS. However, the cellular 
and molecular mechanisms underlying the 
development of cystic and/or hemorrhagic fol-
licles containing an enlarged theca cell layer 
are not well defined. This review briefly 
describes several transgenic and KO mouse 
models of human PCOS (Table 1), and discuss-
es their ovarian phenotypes and the advantag-
es and possible limitations of applying these 
models to human PCOS.

Genetic modeling of ovarian phenotypes in 
mice

Several lines of evidence indicate that changes 
in the production of luteinizing hormone (LH) in 
the pituitary gland are important for the devel-
opment of cystic follicles in human PCOS. For 
example, women suffering from PCOS exhibit 
significantly increased levels of circulating LH 
compared to healthy controls [7]. Ovarian theca 
cells are the cell type that predominately 
expresses the LH receptor [8], and these cells 
become hypersensitive to LH during the devel-
opment of human PCOS [1, 9]. Furthermore, 
chronic treatment with human chorionic gonad-
otropin (hCG) [10] or overexpression of LH and 
hCG [11-13] in female mice induces cystic folli-
cle formation in the ovary. However, develop-
ment of cystic or hemorrhagic follicles does not 
always occur along with an increase in LH levels 
in female mice that overexpress hCG under the 
control of different promoters [14, 15]. Although 
female follicle-stimulating hormone (FSH)β 
knockout mice have been shown to have 
increased levels of circulating LH, there is no 
evidence for the development of cystic or hem-
orrhagic follicles in FSH-deficient female mice 
[16]. In addition, overexpression of FSHβ leads 
to detectable numbers of cystic or hemorrhagic 
follicles without changes to circulating LH levels 
[17]. Thus, although LH is essential for the later 
stages of follicular development (from preovu-
latory to periovulatory stages) and ovulation, 
these results argue in favor of a primary role for 
LH in the formation of cystic or hemorrhagic fol-
licles in the ovary. 

It is generally accepted that elevated andro-
gens are the main culprit behind the develop-

ment of PCOS [1]. It is notable, however, that 
polycystic ovaries exist in women during puber-
tal development [18] and in women with hyper-
androgenism [1] even when LH secretion and 
pulsatility is normal [19]. It has been shown 
that long-term treatment with estradiol valerate 
(EV) or dihydrotestosterone causes the forma-
tion of polycystic ovaries in rats [20-23]. 
Furthermore, treatment with letrozole, an aro-
matase cytochrome P450 (P450arom) blocker, 
inhibits androgen-to-estrogen conversion and 
leads to the development of massive multiple 
follicular cysts in rats [23]. Thus, both clinical 
and experimental studies suggest that a 
dynamic equilibrium among ovarian steroid hor-
mones plays a significant role in the develop-
ment of multiple cystic follicles under both 
physiological and pathological conditions.

Animal studies have demonstrated that both 
estrogens and androgens contribute to follicu-
logenesis, ovarian remodeling, and the devel-
opment of several diseases [24]. There is in 
vivo and in vitro evidence to support the idea 
that the proliferation of theca cells in growing 
follicles results in significant androgen biosyn-
thesis [1], but estrogens have been shown to 
inhibit androgen production in estrogen recep-
tor (ER) α-expressing theca cells [25-27]. The 
absence of P450arom in theca cells is reflec-
tive of the paracrine action of ovarian-derived 
estrogens in the activation of ERα signaling in 
vivo [28, 29]. Understanding the role of ERα in 
the regulation of theca cell function has been 
aided by the global and theca cell-specific dele-
tion of the ERα and/or ERβ gene in mice [30-
34]. The initial analyses of the ovaries of these 
KO mice indicate that formation of hemorrhagic 
cystic follicles is likely to arise from the loss of 
ovarian ERα action in theca cells. Similarly to 
the ERα KO mice (ERαKO) [30-34], female mice 
overexpressing LH/hCG [11-13] or lacking plas-
minogen activator inhibitor-1 (PAI-1) [35] also 
exhibited theca cell hyperplasia that is consis-
tent with that seen in human PCOS [36]. 
However, although female mice lacking 
P450arom (ArKO mice) developed hemorrhagic 
cystic follicles [28, 29], histological examina-
tion showed no hyperplasia of the theca cells in 
the ArKO ovaries. These studies lead to at least 
two conclusions: (1) there is no cause-and-
effect relationship between theca cell hyper-
plasia and the formation of cystic and hemor-
rhagic follicles, and (2) altered estrogen 
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Table 1. Published mouse models that have ovarian alterations and their accompanying PCOS-like 
phenotypes
Transgenic or
knockout models

Ovarian phenotype Ovulation Infertility Anterior pituitary Sex steroids Refer-
enceFollicular 

cysts
Hemorrhagic 

cysts
TC / IC FSH LH/hCG E2 P4 T/DHT A

1. Overexpression 
of hCGαβ

+ +, massive hyperpla-
sia

No Yes n.d. ↑ ↑ n.d. n.d. n.d. [11]

2. Overexpression 
of bovine LHβ

+, large +, frequent hyperpla-
sia

No Yes n.d. ↑ ↑ ↑ ↑ n.d. [12, 13]

3. ERαβKO + + n.d. No Yes − ↑ − n.d. ↑ − [30, 32]
4. ERαKO +, large +, frequent hyperpla-

sia
No Yes − ↑ ↑ − ↑ ↑ [30-32, 

34, 37]
5. TC-specific 
ERαKO with PMSG/
hCG stimulation

+, large +, frequent hyperpla-
sia

Yes (oo-
cytes ↓)

Age-de-
pendent

− ↓ n.d. n.d. ↑ n.d. [31]

6. Overexpression 
of NGF

No No n.d. Yes No − − − ↑ − − [40]

7. Overexpression 
of NGF with PMSG/
hCG stimulation

+, large +, frequent n.d. Yes (pups 
↓)

n.d. n.d. n.d. ↑ ↓ ↑ − [40]

8. Overexpression 
of hPAI-1

+, large + hyperpla-
sia

No n.d. n.d. n.d. − − ↑ n.d. [35]

TC, theca cells; IC, interstitial cells; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2, 17β-estradiol; P4, progesterone; T, testosterone; A, androstene/andro-

stenedione; PMSG, pregnant mare’s serum gonadotropin; hCG, human chorionic gonadotropin; ER, estrogen receptor; NGF, nerve growth factor; hPAI-1, human plasmino-

gen activator inhibitor-1; +, presence; −, no changes vs. wild-type controls; ↑; increased vs. wild-type controls; ↓, decreased vs. wild-type controls; n.d., not determined.

biosynthesis in P450arom-expressing granulo-
sa cells or the estrogenic action on ERα-
expressing theca cells is likely involved in the 
formation of cystic and hemorrhagic follicles. 

Because human PCOS is often associated with 
metabolic disturbances [3, 18], caution should 
be taken when selecting the appropriate trans-
genic or KO models based solely on their ovari-
an phenotype. In addition to impaired ovarian 
function and fertility, the onset of insulin resis-
tance and diabetes observed in adult female 
ERαKO mice [37] mimics what is seen in some 
PCOS patients [1, 18]. Thus, activation of ERα 
may serve as a critical link between reproduc-
tion and metabolic disturbances. Although it 
remains to be determined what effects theca 
cell-specific deletion of ERα has on metabo-
lism, the ERαKO mouse model can be useful for 
progressive studies of ovarian dysfunction and 
metabolic changes or for expanded studies 
that seek to understand the complex PCOS 
signature.

Manipulation of endogenous estrogen levels by 
treatment with EV or gonadotropin from preg-
nant mare serum has previously been shown to 
increase the production of ovarian nerve growth 
factor (NGF) in rat theca cells and to induce the 
formation of follicular cysts [38, 39]. Moreover, 
intraovarian treatment with a neutralizing anti-
serum to NGF in conjunction with systemic 

exposure to an antisense oligodeoxynucleotide 
to the p75 NGF receptor reduces the number of 
precystic and cystic follicles [39]. This demon-
strates that it is possible to prevent the devel-
opment of cystic follicles by inhibiting NGF sig-
naling. Transgenic NGF female mice, however, 
are indistinguishable from wild-type animals in 
all major reproductive functions and a detailed 
histological analysis did not reveal polycystic 
ovaries in these animals [40]. Interestingly, 
these transgenic NGF mice were found to be 
susceptible to challenge with gonadotropins 
(FSH and LH). After treatment with gonadotro-
pins, the mice presented with a detectable 
ovarian phenotype that included the formation 
of massive follicular cysts [40] suggesting that 
endogenous steroid hormones participate in 
NGF-mediated ovarian dysfunction. More 
research needs to be done to determine wheth-
er the abnormal ovarian NGF signaling results 
in metabolic changes, and to elucidate what 
the downstream target of the NGF signaling 
pathway may be in relation to the development 
of polycystic ovaries.

Another factor implicated in human PCOS is the 
glycoprotein PAI-1. Several studies have shown 
that women with PCOS have increased levels of 
PAI-1 and increased PAI-1 activity [41-44]. It 
has also been shown that the PAI-1 polymor-
phism is significantly associated with the risk of 
developing PCOS [45]. Both pathological and 
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histological studies have been performed in 
mice overexpressing PAI-1 [35] and these mice 
have been found to have polycystic ovaries and 
increased testosterone levels that are compa-
rable to what are seen in human PCOS. Thus, 
the transgenic PAI-1 mouse model could be 
used for future experimental investigations into 
the many gaps in the understanding of the 
interactions between reproductive and meta-
bolic processes in human PCOS. 

Concluding remarks

PCOS is a complicated endocrine disorder 
whose pathophysiology is the result of the 
interactions, combinations, and contributions 
of various genetic and environmental factors. 
Because of the heterogeneous nature of PCOS 
[3], it is worth noting that the majority of PCOS-
like animal models rely upon external chemical 
treatments to be able to focus on particular 
aspects of the disease’s clinical pathology. As 
outlined above, transgenic and knockout 
mouse models do not replicate the full spec-
trum of human PCOS, but they do provide 
opportunities to gain deeper insight into the 
development of PCOS. Polycystic ovaries are 
the morphological ovarian phenotype in human 
PCOS [3, 6], and there is evidence for a primary 
ovarian defect being the root cause of human 
PCOS. The use of different transgenic and 
knockout mouse models with their own unique 
ovarian phenotype(s) may help to identify and 
quantify changes in reproductive and endo-
crine networks in these animals that may lead 
to important clinical insights into the develop-
ment of PCOS in women.
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